Differences in Bullying Victimization Between Students With and Without Disabilities

Article in School psychology review · March 2015
DOI: 10.17105/SPR44-1.98-116

5 authors, including:

George G Bear
University of Delaware
77 PUBLICATIONS 1,864 CITATIONS

Chunyan Yang
University of California, Santa Barbara
26 PUBLICATIONS 102 CITATIONS

Deborah Boyer
University of Delaware
3 PUBLICATIONS 17 CITATIONS

Some of the authors of this publication are also working on these related projects:

Teacher Victimization and Teacher-directed Violence View project

Students' resilience to bullying victimization: The role of social and emotional learning View project
Differences in Bullying Victimization Between Students With and Without Disabilities

George G. Bear, Lindsey S. Mantz, Joseph J. Glutting, and Chunyan Yang
School of Education, University of Delaware

Deborah E. Boyer
Center for Disabilities Studies, University of Delaware

Abstract. Prevalence rates for bullying victimization among children with disabilities have varied greatly in the research literature. Two reasons for such variability were the focus of this study: (a) rates vary as a function of disability type, and (b) rates vary based on the bullying measure and criteria used to classify students as bullying victims. The sample consisted of 1,027 parents or guardians of children with disabilities and 11,500 parents or guardians of children without disabilities who reported the frequency with which their children experienced bullying in general and 12 specific behaviors associated with verbal, physical, and social–relational bullying. Prevalence rates and odds ratios (ORs) differed considerably based not only on disability type but also on the classification criteria used. For both conceptual and practical reasons, it is recommended that bullying victims be considered those who experience bullying-related behaviors frequently and repetitively as opposed to only sometimes.

Victims of bullying are at higher risk of a number of negative outcomes, including greater depression and suicide ideation (Turner, Exum, Brame, & Holt, 2013), lower academic achievement (Glew, Fan, Katon, Rivara, & Kernic, 2005), and increased involvement in violence-related behaviors (Nansel, Overpeck, Haynie, Ruan, & Scheidt, 2003). Yet, we know little about which students are at greatest risk of being bullied (Christensen, Fraynt, Neece, & Baker, 2012). A growing number of studies show that students with disabilities, in general, are much more likely to be victims of bullying than students without disabilities (Farmer et al., 2010; Rose, Espelage, & Monda-Amaya, 2009; Rose, Monda-Amaya, & Espelage, 2011; Turner, Vandersmiden, Finkelhor, Hamby, & Shattuck, 2011). However, as seen in a recent review of the research literature on bullying, victimization rates for students with disabilities vary greatly, ranging from 0% to 100% (Rose et al., 2011). As discussed later, whether the risk of bullying victimization is closer to 0% or 100% has profound implications for school psychologists.

WHY PREVALENCE OF BULLYING VICTIMIZATION VARIES GREATLY AMONG STUDIES

There are multiple reasons why the prevalence of bullying victimization varies for children with disabilities (see Swearer, Wang,
Maag, Siebecker, & Frerichs, 2012), including differences in student demographic characteristics (e.g., age, gender, race or ethnicity) and educational settings (e.g., country or location of schools, degree of inclusion in general education). Two additional reasons were the focus of this study. First, victimization prevalence rates vary by type of disability and particularly by behavioral characteristics associated with the disability. Second, prevalence rates vary greatly depending on the measure of bullying and the criteria used to classify students as bullying victims. As discussed below, it is likely that either of these reasons helps explain why prevalence rates have ranged from 0% to 100%.

Victimization Prevalence Varies by Type of Disability

In general, few studies have included sufficiently large samples to examine bullying victimization across separate types of disabilities. As reported in a literature review of bullying and bullying victimization among students with disabilities (Rose et al., 2011), the total sample sizes in such studies have seldom exceeded 100. To increase sample sizes, researchers often combine different types of disabilities either by merging all students into one general category or by creating a small number of separate categories believed to share certain characteristics, such as combining children with emotional disturbance (ED) and children with other health impairments (OHI). Studies that created separate categories have been helpful in demonstrating that not all students with disabilities experience the same degree of bullying and that behavioral characteristics shared by some disabilities are related to the degree of bullying experienced (e.g., Swearer et al., 2012). However, this method is problematic because disabilities may be combined differently across studies. Thus, generalization and comparison of findings may be limited.

Blake, Lund, Zhou, Kwok, and Benz (2012) provided an exception to studies that combined types of disabilities to create adequate sample sizes by using the National Longitudinal Transition Study-2 and Special Education Elementary Longitudinal Study datasets to examine bullying victimization prevalence rates as reported by over 13,000 parents. Comparing prevalence rates across 12 categories of disabilities with the overall rate for children with disabilities, they found significantly higher rates among children with ED and children with OHI. Prevalence rates, however, were not compared with those for students without disabilities. In the few studies that included the general population (and also did not combine disabilities), higher rates of bullying victimization have been reported for children with autism spectrum disorder (ASD; Humphrey & Symes, 2010) and OHI (including attention deficit hyperactivity disorder [ADHD]; Unnever & Cornell, 2003; Weiner & Mak, 2009). Swearer et al. (2012) found higher rates for children with ED (referred to as behavioral disabilities in their study) when they were combined with children with OHI. Results have been less consistent or lacking for other disabilities. Although some studies have reported higher victimization rates for children with specific learning disabilities (SLD; Nabuzoka, 2003), others have not (Rose, Espelage, Monda-Amaya, Shogren, & Aragon, 2013; Swearer et al., 2012). Research on intellectual disabilities (ID) has also shown inconsistent results. One study found that students with ID reported increased victimization compared with students without disabilities, but parent reports in the same study showed no differences (Christensen et al., 2012). For all other disabilities, we found no published studies in the United States on bullying prevalence rates compared with children without disabilities.

It is likely that students with certain disabilities are at higher risk of being bullied because of the behavioral characteristics associated with their disabilities (Rose et al., 2011; Swearer et al., 2012). Research supports this hypothesis, showing that children at greatest risk of bullying victimization tend to exhibit externalizing and internalizing behavioral problems and social skills deficits (Cook, Williams, Guerra, Kim, & Sadek, 2010; Farmer et al., 2010; Rose et al., 2011; Turner et al.,
found that victimization differences for students with SLD were no longer significant when receptive vocabulary differences were controlled. Yet, counter to this position, Blake et al. (2012) found that children with S/LI were the least likely to be bullied compared with children in 11 other categories of special education.

In sum, research has shown that students with disabilities are generally at greater risk of being bullied compared with children without disabilities. However, very few studies have concentrated on specific disability types compared with other children with and without disabilities. Those that have been published have tended to find the greatest bullying victimization risk for children with ED, OHI, and ASD, which are disabilities in which externalizing and internalizing behavior problems and social skills deficits are fairly common. Results are lacking or less consistent for children with other disabilities.

Prevalence Varies Greatly Depending on Measure and Cutoff Scores Used

Little uniformity exists across studies in how bullying is measured and especially in the criteria used to define bullying (Rose et al., 2011; Swearer, Siebecker, Johnsen-Frerichs, & Wang, 2010). Some studies have used liberal criteria that classify students as victims based on a single incident of bullying occurring over a lengthy period (e.g., school year). This is particularly problematic when bullying is left undefined and items do not include specific behaviors that constitute bullying in its different forms (e.g., physical, verbal, social–relational). An example of a liberal criterion is seen in the previously cited national study of bullying victimization conducted by Blake et al. (2012) in which parents were asked to respond either yes or no when asked if their child had been “bullied or picked on” by other students during the current or past school year. One should expect such studies to yield higher prevalence rates than those using more conservative criteria, such as classifying victims based on the occurrence of multiple bullying incidents.
Whereas many researchers have used a single item to classify students as victims of bullying (e.g., Blake et al., 2012; Bradshaw, Sawyer, & O’Brennan, 2007; Nansel et al., 2001) others have used multiple items (Espelage & Holt, 2001; Unnever & Cornell, 2003) and some have used both methods (Swearer et al., 2012). Regardless of whether a single item or multiple items are used, limiting the response choice to either yes or no fails to capture the frequency of occurrence. The frequency of occurrence is a key element of bullying victimization, with continuing victimization largely defining the construct (Olweus, 1993; Solberg & Olweus, 2003; Swearer, Espelage, Vaillancourt, & Hymel, 2010). For this important reason, most researchers do not limit response choices to yes or no but instead include a much wider range of choices designed to measure the frequency of bullying, such as sometimes, once or twice, once a month, once a week, and every day.

Regardless of the number of items or the response format, researchers commonly divide students into two dichotomous groups: non-bullied and bullied (e.g., Blake et al., 2012; Swearer et al., 2012). Doing so, however, raises a question with profound implications for both research and interventions targeting individual students: What constitutes bullying victimization? Does a response of sometimes or once or twice in a school year (either to the general bullying item or to one or more of the specific bullying behaviors) constitute bullying?

PURPOSE AND HYPOTHESES

The purpose of this study was to examine bullying victimization among children with disabilities and compare those rates with those of children without disabilities. As previously described, differences in measuring bullying victimization and especially in the cutoff criteria used by researchers to define bullying victimization have major implications for the magnitude of prevalence rates. To demonstrate this point, we used multiple criteria to determine the odds of children with disabilities being bullied compared with children without disabilities. In assessing bullying victimization, we surveyed parents of children with and without disabilities, including parents of children with 10 different types of disabilities. Several previous studies used parent reports (e.g., Blake et al., 2012; Nordhagen, Nielsen, Stigum, & Kohler, 2005; Shetgiri, Lin, & Flores, 2013), but student reports are more common. Student and teacher reports of bullying victimization are advantageous in that the respondents directly observe bullying incidents in school; however, there also are several advantages of parent reports. First, they serve as a proxy for students unable to complete a survey or whose validity may be questionable, such as students in lower grades and those otherwise unable to read or understand the items on a survey (including many children with disabilities in elementary school). Second, their completion does not consume valuable instructional time in school or the time necessary for teachers to complete a report on each individual child; thus, schools may be more receptive to their use, allowing for a larger sample size.

Drawing from research and theory reviewed earlier, we hypothesized that prevalence rates, irrespective of disability category, would vary markedly based on the criteria used to determine that a student is a victim of bullying. We also hypothesized that students with ED would have the highest victimization prevalence rates and that children with OHI and ASD also would have higher rates than children without disabilities.

METHOD

The study was part of a larger study of school climate and bullying perceived by students, teachers, and parents. The Delaware Department of Education sent an invitation letter to all public schools.

Participants

The sample initially consisted of 13,021 parents or guardians in 74 elementary schools in Delaware (Grades K–5), representing 69% of elementary schools in the state. The schools
volunteered to participate after receiving the aforementioned invitation letter. Only parents, however, were given items that allowed for comparisons of children with and without disabilities. Schools were given enough four-page surveys (Scantron forms) to send to the homes of every student enrolled. Schools choosing not to send the survey to all homes were asked to select homes (i.e., students) randomly. All surveys were completed in January or February 2013. Completion rates across the 74 schools ranged from 23.7% to 65.7%, with a mean of 39.6%.

To ensure confidentiality, respondents were asked to not write their name or their child’s name on the survey. However, they were asked to indicate their child’s gender, grade, and race or ethnicity (Black, White, Hispanic or Latino, Asian, Native Hawaiian or Pacific Islander, or multiracial). Next, they were given the option to respond yes or no to the following question: “Does your child have a disability and receive special education services in this school?” If they responded yes, they were asked to “select your child’s Category of Primary Eligibility, as indicated on your child’s IEP [Individualized Educational Program]” from a list of 13 categories according to Delaware law: SLD, mild ID, moderate ID, severe ID, developmental delay, blind or visual impairment (B/VI), deaf or blind, HI, S/LI, ASD, ED, orthopedic impairment (OI), and OHI (e.g., ADHD).

To determine the extent of inclusion in the regular classroom or in children without disabilities, respondents were then asked to “select the extent to which your child is with other children without disabilities during the school day.” Response choices were as follows: the entire school day, over half of the day, less than half of the day, and seldom or never. After these items, parents responded to 46 items from the Delaware School Climate Survey (Bear, Yang, Mantz, Pasipanodya, Boyer, & Hearn, 2014), which were not part of the current study, and 13 items about bullying victimization (see Measures section for description of items).

Of the original 13,021 surveys, 494 (3.8%) were deleted for the reasons that followed. First, the two students identified as deaf or blind were excluded because of the very low sample size. We also excluded the developmental delay category (n = 50) because it was limited to a specific age range (3–9 years); thus, comparisons to other categories with different ages would be of questionable validity. Second, 442 cases were deleted for incomplete or inconsistent responses to the two items regarding the child’s disability. That is, we deleted the cases in which a parent responded that a child had a disability but failed to indicate which disability or in which a parent indicated that there was no disability but then indicated a type of disability. Although this process reduced the original sample by 3.4%, it likely increased the validity of the remaining responses.

Table 1 shows the children’s race or ethnicity, gender, and grade as reported in the final sample of 12,527 participants (1,027 parents or guardians of students with disabilities and 11,500 parents or guardians of children without disabilities). The mean percentage of students qualifying for free or reduced-price lunch in the 74 elementary schools ranged from 12.3% to 96.3% (M = 60.48%). Of the students with disabilities, 327 had SLD, 325 had OHI, 221 had S/LI, 61 had ASD, 23 had mild ID, 14 had moderate ID, 24 had HI, 11 had B/VI, 9 had OI, and 12 had ED. No parents responded that their child had a severe ID. Among the students with disabilities, 722 (70.3%) were in an inclusive setting the entire day; 179 (17.40%), over half the day; 93 (9.1%), less than half the day; and 7 (0.7%), seldom or never. Data on inclusion were missing for 26 students (2.5%).

Measures

In assessing bullying victimization, we used 12 items measuring specific behaviors that are associated with three commonly recognized types of aggression and bullying: verbal, physical, and social–relational (Card & Hodges, 2008). After these items, parents were asked to respond to a general bullying item (“My child was bullied in this school”). This item followed the 12 specific bullying
behavior items, and the term *bullying* was not used until this item was presented. This was done to avoid priming the parent to the construct of bullying because some studies suggest that respondents may provide more honest responses when they are unaware that bullying is being assessed (Espelage & Swearer, 2003).

The 12 items assessing specific behaviors were adapted from the verbal, physical, and social–relational bullying victimization subscales of the Adolescent Peer Relations Instrument Bully/Target Scale (Marsh et al., 2011). The four verbal subscale items measure the extent to which students are the targets of teasing, name-calling, or hurtful jokes; the four physical subscale items measure the extent to which students are victims of acts of aggression or threats thereof that cause physical harm to students or their property; and the four social–relational subscale items measure the extent to which victims are excluded or isolated from others. Items were reworded to be completed by parents (e.g., “My child was pushed or shoved”) instead of students (e.g., “I was pushed or shoved”). To provide evidence that all items on the three subscales measure the respective construct, multigroup confirmatory factor analyses were conducted on a sample of 19,575 parents of students in Grades K–12 (Bear et al., 2014). The sample included parents in the present study plus parents of students in middle and high schools in the same school districts (thus, demographic data were similar to those in Table 1). Adequate fit indices were found for the three-factor model: $\chi^2 = 2,297.95, p < .001$, comparative fit index $= .942$, root mean square error of approximation $= .047$, and standardized root mean square residual $= .045$. Item loadings ranged from .51 to .87. Alternative models also were tested, with the three-factor model providing the strongest fit statistics. Configural, metric, and scalar invariance was found across gender, grade levels (elementary, middle, and high school), and racial–ethnic groups (i.e., White, African American, Hispanic or Latino, Asian, and multiracial). Coefficients of inter-

Table 1. Demographic Data of Students

<table>
<thead>
<tr>
<th>Category</th>
<th>Students Without Disabilities</th>
<th>Students With Disabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Race or ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5,466</td>
<td>49.0</td>
</tr>
<tr>
<td>Black</td>
<td>2,288</td>
<td>20.5</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2,038</td>
<td>18.3</td>
</tr>
<tr>
<td>Asian</td>
<td>574</td>
<td>5.1</td>
</tr>
<tr>
<td>American Indian</td>
<td>48</td>
<td>0.4</td>
</tr>
<tr>
<td>Multiracial</td>
<td>749</td>
<td>6.7</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5,156</td>
<td>45.1</td>
</tr>
<tr>
<td>Female</td>
<td>6,275</td>
<td>54.9</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2,296</td>
<td>20.0</td>
</tr>
<tr>
<td>2</td>
<td>2,316</td>
<td>20.1</td>
</tr>
<tr>
<td>3</td>
<td>2,545</td>
<td>22.1</td>
</tr>
<tr>
<td>4</td>
<td>2,411</td>
<td>21.0</td>
</tr>
<tr>
<td>5</td>
<td>1,932</td>
<td>16.8</td>
</tr>
</tbody>
</table>

Note. For students without disabilities, 337 cases were missing for race or ethnicity and 75 cases for gender. For students with disabilities, 29 cases were missing for race or ethnicity and 8 cases for gender.
nul consistency for the full sample were .90 for the verbal bullying subscale, .78 for the physical bullying subscale, and .89 for the social–relational bullying subscale. Across grade level, gender, and racial–ethnic groups, coefficients ranged from .88 to .93 for the verbal bullying subscale, from .74 to .82 for the physical bullying subscale, and from .88 to .92 for the social–relational bullying subscale.

Preceding the 13 items, respondents were asked the following: “Since September, how often has the following been done to your child by another student (or other students) at this school?” They were then instructed to respond never, sometimes, once or twice a month, once a week, several times a week, or every day. Item scores ranged from 1 (never) to 6 (every day).

Statistical Analyses

We calculated prevalence rates for students with and without disabilities, including calculations separately for 10 types of disabilities and for all students with disabilities combined. Combining disabilities was done for the purpose of comparing those results with previous studies that collapsed disability types (e.g., Swearer et al., 2012). Rates were computed for the one general bullying victimization item, as well as for responses to the verbal, physical, and social–relational bullying victimization subscales. Multiple logistic regression (MLR) models were used to produce ORs. For all analyses, the OR expresses the relative risk of a student with a disability being bullied compared with a student without a disability. ORs vary from a lower bound of 0.00 to an upper bound that approaches infinity, with a scale center of 1.00. ORs appreciably higher than 1.00 indicate risk factors, and ORs significantly lower than 1.00 indicate protective factors. For example, an OR of 1.5 for a student with a disability indicates that 1.5 children with the disability are bullied for every 1 child from the population of students without a disability. Given the difference between 1.5 and the scale center of 1.00 (1.5 – 1.00 = 0.50), an OR of 1.5 also specifies that children with the given disability face a 50% increased risk of being bullied over children without disabilities.

As argued previously, differences in bullying victimization between children with and without disabilities, as reflected in the OR value, are likely to depend on the bullying victimization measure and cutoff criteria used. To emphasize this point, we determined ORs using four different measures and two different criteria for each measure. The first measure used was the general bullying victimization item. ORs were determined for this item twice, depending on the criteria used. First, only a response of never on the general item constituted nonvictim status (i.e., lower-bound cutoff of victimization of sometimes). Second, a response of never or sometimes to that same measure constituted nonvictim status (i.e., lower-bound cutoff of victimization of once or twice a month). ORs were also determined for three other measures—responses to the verbal, physical, and social–relational bullying victimization subscales. Like the general bullying item, ORs were calculated twice for each of the three sets of items. First, the response criterion of never on all four items constituted nonvictim status. Second, the response criterion of sometimes to any one of the four items, with no response greater than never or sometimes to any one of the four items, constituted nonvictim status.

Many psychological constructs, especially those related to childhood ability and adjustment, vary by demographic characteristics (McDermott, 1995). Examples include well-known gender differences in the identification and classification of SLD and ADHD (American Psychiatric Association, 2013). Studies also show that a child’s race and ethnicity are often related to the probability that he or she will receive special education (Losen & Orfield, 2002; National Research Council, 2002). For example, in the current study we found that among children with ASD, 90% were boys and 66% were White. Therefore, in the MLR models we made no attempt to control for gender, race or ethnicity, or the extent of special education inclusion for fear that their covariation might undermine the relevance of the explanatory variables (i.e., the
special education groupings) in predicting bullying victimization.

Binary explanatory variables (e.g., SLD) produce 2×2 comparisons with the outcome variable in an MLR analysis. When one of the four cells in the 2×2 comparisons equals 0, the standard errors of parameters estimated by maximum likelihood MLR become too large. This phenomenon is referred to as a separation problem, situation of sparse data, or monotone likelihood (Eyduran & Ozdemir, 2007; Firth, 1993). Depending on the analysis, separation problems took place for the explanatory variables of OI and moderate ID. The separations occurred because of a constant. For example, according to the general bullying item, none of the children with OI or with moderate ID were bullied. Given this constancy, we decided to remove the OI and moderate ID variables in the MLR analyses rather than using the Haldane correction where the 0 is replaced with a value of 1 (Bull, Mak, & Greenwood, 2002; Heinze & Schemper, 2002). However, it was not necessary to remove these students in the calculation of prevalence rates.

RESULTS

Two hypotheses guided the study. First, we hypothesized that prevalence rates would vary markedly based on the criteria used to determine victimization. Second, we hypothesized that students with ED would have the highest victimization prevalence rates and that children with OHI and ASD also would have higher rates than children without disabilities. The data with which we evaluated these two hypotheses are described below.

Victimization Prevalence According to Criteria

As shown in Table 2, using different cutoff criteria made a marked difference in prevalence rates, irrespective of type of disability or bullying victimization. For example, when sometimes was the lower-bound cutoff of the single global bullying item (meaning any response other than never constituted bullying victimization), the prevalence rate was 29.8% for all disabilities combined and ranged from 0% to 66.7% across the 10 different disabilities, with a median of 30.2%. Alternatively, when once or twice a month was instead the lower-bound cutoff point (and therefore sometimes did not constitute victimization), the prevalence rate was 7.3% for all disabilities combined and ranged from 0% to 41.7% across the 10 different disabilities, with a median of 8.05%. Comparatively, the prevalence rates for children without disabilities were 22.3% and 5.2% when the lower-bound cutoff point for the global bullying item was sometimes and once or twice a month, respectively.

Regardless of the cutoff criteria, prevalence rates also varied greatly based on the measure used (i.e., the single global bullying item that assessed bullying in general or sets of items that assessed the three types of bullying behavior). As shown in Table 2, across all categories of students, parents reported greater frequencies of the three types of bullying behavior than of bullying in general. They also tended to report less physical bullying than verbal and social–relational bullying. For example, for all students with disabilities combined, prevalence rates based on once or twice a month as the lower-bound cutoff (which indicates that at least one of the specific bullying behaviors was reported as occurring this often) were 19.6% for verbal bullying behaviors, 9.9% for physical bullying behaviors, 11.0% for social–relational bullying behaviors, and 7.3% for bullying in general.

Victimization Prevalence Rates by Disability Category

Table 3 presents ORs that indicate the risks of children with disabilities being bullied when compared with students without disabilities. In viewing the statistical significance of the ORs, one should note that whereas larger prevalence rates among children with disabilities increased the probability of statistical significance, larger group sizes were particularly sensitive to differences of small magnitude. This largely explains why some ORs for all children with disabilities combined and for
Table 2. Bullying Victimization Prevalence Rates Based on Type of Disability

<table>
<thead>
<tr>
<th>Disability</th>
<th>General Item</th>
<th>Verbal Bullying</th>
<th>Social–Relational Bullying</th>
<th>Physical Bullying</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>77.7</td>
<td>17.1</td>
<td>5.2</td>
<td>22.3</td>
</tr>
<tr>
<td>SLD</td>
<td>72.4</td>
<td>21.7</td>
<td>5.9</td>
<td>27.6</td>
</tr>
<tr>
<td>Mild ID</td>
<td>60.9</td>
<td>21.7</td>
<td>17.4</td>
<td>39.1</td>
</tr>
<tr>
<td>Moderate ID</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B/VI</td>
<td>60.0</td>
<td>30.0</td>
<td>10.0</td>
<td>40.0</td>
</tr>
<tr>
<td>HI</td>
<td>69.6</td>
<td>21.7</td>
<td>8.7</td>
<td>30.4</td>
</tr>
<tr>
<td>S/LI</td>
<td>75.1</td>
<td>17.1</td>
<td>7.8</td>
<td>24.9</td>
</tr>
<tr>
<td>ASD</td>
<td>70.0</td>
<td>21.7</td>
<td>8.3</td>
<td>30.0</td>
</tr>
<tr>
<td>ED</td>
<td>33.3</td>
<td>25.0</td>
<td>41.7</td>
<td>66.7</td>
</tr>
<tr>
<td>OI</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OHI</td>
<td>64.9</td>
<td>28.5</td>
<td>6.6</td>
<td>35.1</td>
</tr>
<tr>
<td>All disabilities</td>
<td>70.2</td>
<td>22.5</td>
<td>7.3</td>
<td>29.8</td>
</tr>
</tbody>
</table>

Note. For the verbal, social–relational, and physical bullying subscales, the Never prevalence rate indicates that never was selected for all four items on the subscale. The S prevalence rate indicates that sometimes was selected for one or more items (but nothing greater than sometimes). The OTM prevalence rate indicates that once or twice a month or more was selected for at least one item on the scale. ASD = autism spectrum disorder; B/VI = blind or visual impairment; ED = emotional disturbance; HI = hearing impairment; ID = intellectual disability; OHI = other health impairment; OI = orthopedic impairment; OTM = once or twice a month; S = sometimes; S/LI = speech or language impairment; SLD = specific learning disability.
Table 3. Odds Ratios Explaining Relative Risk of Bullying

<table>
<thead>
<tr>
<th>Disability</th>
<th>Global Bullying Item (One Item)</th>
<th>Verbal Bullying Factor (Four Items)</th>
<th>Physical Bullying Factor (Four Items)</th>
<th>Social Bullying Factor (Four Items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower-Bound Cutoff of Sometimes</td>
<td>Lower-Bound Cutoff of Once or Twice a Month</td>
<td>Lower-Bound Cutoff of Sometimes</td>
<td>Lower-Bound Cutoff of Once or Twice a Month</td>
</tr>
<tr>
<td>Specific learning disability</td>
<td>1.33*</td>
<td>1.15</td>
<td>1.03</td>
<td>1.10</td>
</tr>
<tr>
<td>Emotional disturbance</td>
<td>6.98*</td>
<td>13.12*</td>
<td>3.71</td>
<td>14.08*</td>
</tr>
<tr>
<td>Other health impairment</td>
<td>1.89*</td>
<td>1.30</td>
<td>1.94*</td>
<td>1.46*</td>
</tr>
<tr>
<td>Mild intellectual disability</td>
<td>2.24</td>
<td>3.87*</td>
<td>2.10</td>
<td>1.30</td>
</tr>
<tr>
<td>Autism spectrum disorder</td>
<td>1.50</td>
<td>1.67</td>
<td>1.00</td>
<td>1.53</td>
</tr>
<tr>
<td>Speech or language impairment</td>
<td>1.16</td>
<td>1.56</td>
<td>0.90</td>
<td>1.10</td>
</tr>
<tr>
<td>Hearing impairment</td>
<td>1.53</td>
<td>1.75</td>
<td>1.80</td>
<td>2.82*</td>
</tr>
<tr>
<td>Blind or visual impairment</td>
<td>2.33</td>
<td>2.04</td>
<td>7.41*</td>
<td>2.68</td>
</tr>
<tr>
<td>All disability categories combined</td>
<td>1.48*</td>
<td>1.45*</td>
<td>1.27*</td>
<td>1.32*</td>
</tr>
</tbody>
</table>

*Note. n = 12,402. Odds ratios explaining the relative risk of bullying are shown by special education category and for all children receiving special education services combined; the models span eight methods for defining bullying. Odds ratios were obtained from multiple logistic regression models and express the relative risk associated with being bullied according to the respective explanatory variable. Odds ratios were rounded to the second decimal position for convenient presentation.

*p < .05.
children with SLD and OHI (the three largest groups) were statistically significant despite being appreciably smaller than ORs for children with other disabilities and much smaller group sizes. It also largely explains why differences in prevalence rates in Table 2 did not always mirror the statistical differences in ORs. As seen in Table 3, when all children with disabilities were combined, ORs ranged from 1.25 to 1.48 and were statistically significant for each measure and cutoff criterion used. However, as reported below, ORs and prevalence rates varied greatly by type of disability.

When we examined prevalence rates and ORs as a function of disability type, several trends were apparent. First, regardless of the measure and cutoff criterion used, children with ED were the most likely to be bullied. For example, using the conservative lower-bound cutoff of once or twice a month for students with ED, the prevalence rates were 75.0% for verbal, 27.3% for physical, and 41.7% for social–relational bullying behaviors and 41.7% for bullying in general. These rates were appreciably higher than those for children with other types of disabilities and for children without disabilities. For children without disabilities, the prevalence rates were 15.3%, 6.8%, 7.8%, and 5.2% for verbal, physical, social–relational, and general bullying, respectively. The ORs for the ED group varied from 1.64 to 14.08, reflecting anywhere from a 1.64 to 14.08 times increased incidence of being bullied compared with children without disabilities.

Second, children with OHI, B/VI, HI, and mild ID also tended to have higher rates of bullying compared with students without disabilities, although prevalence rates and ORs varied markedly across these disabilities and the criteria and measure used. For children with OHI, using the lower-bound cut point of once or twice a month, the prevalence rates were 21% for verbal, 11.9% for physical, and 10.5% for social–relational bullying behaviors and 6.6% for bullying in general. Likewise, the ORs for children with OHI ranged from 1.30 to 1.94, with six of eight ORs being statistically significant. Similarly, though not predicted, the prevalence rates for children with B/VI, HI, and mild ID tended to be higher than those for children without disabilities, as well as in comparison with the ORs determined for children with other types of disabilities. For example, using the once or twice a month lower-bound cutoff, the prevalence rates for children with B/VI, HI, and mild ID were 36.4%, 28.6%, and 21.7%, respectively, for verbal bullying behaviors; 10.0%, 4.5%, and 8.7%, respectively, for physical bullying behaviors; 36.4%, 18.2%, and 18.2%, respectively, for social–relational bullying behaviors; and 10.0%, 8.7%, and 17.4%, respectively, for bullying in general.

Third, inconsistent with several previous studies, children with ASD were generally not found to be victimized significantly more than students without disabilities. The ORs ranged from 0.93 to 2.49, and only the latter OR (social–relational bullying) was statistically significant. Fourth, children with OI, moderate ID, S/LI, and SLD tended to be bullied less than or no greater than children without disabilities. For example, the ORs ranged from 0.90 to 1.56 (median = 1.13) for children with S/LI and from 1.03 to 1.36 for children with SLD (median = 1.26). Although ORs could not be calculated for children with OI and moderate ID, in response to the global bullying item, 0% of the parents of children with OI and moderate ID reported that their children were victims of bullying.

DISCUSSION

Although multiple factors might explain why bullying victimization prevalence rates for children with disabilities have ranged from 0% to 100% in the research literature (Rose et al., 2011), we have argued that three reasons are most paramount. First, prevalence rates vary greatly because of different cutoff criteria used to define bullying victimization. Second, regardless of the cutoff criteria used, prevalence rates vary by how bullying victimization is measured. In this study we compared the common practice of using one global bullying item versus using multiple items to assess bullying behaviors. Third, prevalence rates...
vary according to the type of disability and the behavioral characteristics of disabilities. Drawing from previous research, we predicted that each of the reasons above would account for differences in prevalence rates for children with disabilities when compared with children without disabilities. As discussed below, the results show that, with some qualifications, each of those factors has a substantial impact on prevalence rates.

Influence of Differing Cutoff Criteria

As previously noted, the cutoff criteria used (defining victimization as sometimes or more vs. once or twice a month or more) greatly affects prevalence rates. When the lower-bound cutoff point of sometimes is used with the global bullying item, the prevalence is 22.3% for children without disabilities and 29.8% for children with disabilities. It ranges from 0% to 66.7% for the 10 different types of disabilities. When once or twice a month is instead used as the lower-bound cutoff point, the prevalence rates drop markedly: 5.2% for children without disabilities, 7.3% for children with disabilities, and 0% to 41.7% for the 10 different types of disabilities. Differences in cutoff criteria mattered less, however, in the statistical significance of the ORs.

As argued by Solberg and Olweus (2003), an appropriate cutoff point should capture the conceptual argument that “bullying is defined as something that occurs over time and with a repetitive nature” (p. 244). They noted that sometimes or only once or twice (without reference to a given period, e.g., one month) might fail to do so. In support of their argument, Solberg and Olweus (2003) examined the effects of different cutoff points in predicting which victims of bullying experience internalizing or externalizing problems. They found that children who experienced bullying infrequently (only once or twice) had more psychosocial adjustment difficulties than children who never experienced bullying. However, those who experienced bullying victimization repetitively (two or more times a month or more frequently) had the greatest psychosocial problems. The study also found that victimization experienced infrequently tended to be more temporary and “lighter,” or less serious, than that experienced repetitively. Accordingly, Solberg and Olweus (2003) recommended that responses including infrequent or occasional acts of aggression or bullying not be used as a lower-bound cutoff point and that such a response category be regarded “as a measure of tendencies of being bullied rather than as a measure of clear victim status” (p. 262).

Not all researchers follow the recommendation of Solberg and Olweus (2003), with some preferring to include the infrequent response category in classifying children as victims of bullying (e.g., Blake et al., 2012; Nordhagen et al., 2005; Swearer et al., 2012; Wang, Iannotti, & Nansel, 2009). Those researchers argue that students who experience bullying, regardless of its frequency, are at risk of negative psychosocial outcomes and should not be overlooked even if the bullying is lighter and not repetitive. As one might expect, studies that include the infrequent response category yield high prevalence rates. For example, using a liberal lower-bound cutoff point of once or twice over the past 2 months in response to one or more of five specific bullying items (without a response choice of sometimes), Swearer et al. (2012) reported bullying victimization rates of 83.3% for students with observable disabilities, 79.1% for students with behavioral disabilities, and 64.7% for students with nonobservable disabilities. Those rates are higher than what we found using sometimes as the lower-bound criterion (e.g., median prevalence rates across disabilities were 65.5% for verbal bullying behaviors, 49.2% for social–relational bullying behaviors, and 42.4% for physical bullying behaviors). If we had used an even more liberal criterion, which we chose not to do, such as that used by Swearer et al. (2012), in which a response other than never to any 1 of the 12 bullying behavior items constituted bullying, the prevalence rates would have been even higher. They would have ranged from 50.0% to 100% across disabilities. If we had used the criterion of a response of sometimes or greater to any 1 of
the 12 bullying behaviors, the prevalence rates would have been 50.0% for OI, 59.6% for ASD, 62.6% for S/LI, 64.3% for moderate ID, 64.8% for SLD, 73.9% for mild ID, 76.1% for OHI, 86.4% for HI, 91.7% for ED, and 100.0% for B/VI. Thus, using this criterion, one might conclude that 50% or more of children with all types of disabilities are bullied and that the percentage is over 90% for some types of disabilities. However, if the recommendation of Solberg and Olweus (2003) instead was applied to our findings, one would conclude that approximately 7.3% of children with disabilities are victims of bullying in school (experiencing bullying at least monthly based on the response to the general bullying item) whereas another 22.5% tend to be bullied, experiencing bullying occasionally or sometimes in school but not frequently and repetitively (compared with 5.2% and 17.1%, respectively, for children without disabilities).

Impact of Differing Measures

Our findings also show that in addition to the cutoff criterion used, the measure used to categorize children as victims of bullying, and more specifically whether one uses a global bullying item or multiple items consisting of specific bullying behaviors to measure bullying, makes a substantial difference in prevalence rates. Prevalence rates are markedly lower when the measure of bullying victimization consists of responses to a global bullying item (“My child was bullied in this school”) than when the measure consists of responses to specific bullying behaviors that occur in school. For example, using the lower-bound cutoff point of sometimes for all children with disabilities combined, the victimization prevalence rate of 29.8% more than doubles to 62% when based on responses to the specific verbal bullying behaviors rather than to the single global bullying item.

The differences in responses to the single global bullying item versus the specific bullying behaviors likely reflect that many parents do not perceive each of the specific bullying behaviors as constituting bullying. This especially appears to be the case for verbal bullying behaviors. That is, parents of many children with and without disabilities (62% and 56.3%, respectively) report that their children experience teasing and other verbal bullying behaviors at least sometimes but they do not necessarily view their children as being victims of bullying per se, with fewer than half of these parents (29.8% and 22.3%, respectively) reporting that their children are victims of bullying sometimes or more frequently.

Impact of Differing Disabilities

As predicted, the prevalence of bullying victimization also varies according to type of disability. The most consistent finding across criteria and measures was that children with ED are much more likely to be bullied than other children. Using the global bullying item and conservative lower-bound cutoff point of one or two times monthly, almost half (41.7%) of children with ED are victims of bullying. This number increases to 66.7% when the more liberal cutoff point of sometimes is applied. Thus, depending on the measure and cutoff criterion used, ORs showed that children with ED are at a 64% to 1,306% greater risk of being bullied compared with children without disabilities. Our finding that children with ED are at greatest risk of being bullied is consistent with the findings in the national study by Blake et al. (2012). They found that children with ED (n = 423) had the highest parent-reported bullying victimization prevalence rate (40.6% in elementary school among 12 categories of disabilities).

As hypothesized in light of the increased risk of externalizing problems and social skills deficits in children with OHI and ASD, we also found that these children had higher prevalence rates for bullying victimization compared with children without disabilities. On the basis of the global bullying item and the liberal lower-bound cutoff point of sometimes, the prevalence rates for children with OHI and ASD were 35.1% and 30%, respectively. These rates are similar to those reported by Blake et al. (2012) (36.3% for OHI and 20% for ASD) using similar criteria. For children
with OHI, six of eight ORs, which ranged from 1.30 to 1.94, were statistically significant. For children with ASD, overall, the ORs indicated they were at a 50% increased risk of being victims of bullying compared with children without disabilities. The results were much less consistent than those for children with ED and OHI, with ORs for children with ASD ranging from 0.93 (physical bullying behaviors) to 2.49 (social–relational bullying behaviors) and only one of eight ORs being statistically significant (social–relational bullying behaviors).

An unexpected finding was that children with B/VI, HI, and mild ID have higher rates of victimization than children without disabilities, although this depended on the measure and cutoff criterion used. For example, parents of children with B/VI reported the highest prevalence rate for verbal bullying (90.9% selected sometimes or greater for at least one of those behaviors) across all disabilities and methods. They also reported the highest prevalence rate for physical bullying behaviors (50.0% selected sometimes or greater for at least one of these behaviors). Though not as high as the B/VI prevalence rates, parents of children with mild ID also indicated more frequent victimization than for students without disabilities: They ranked the third highest among disabilities in their reports for verbal bullying (73.9%) and the general bullying item (39.1%). The social–relational bullying prevalence rate for students with HI ranked third highest among the disabilities; 63.7% of parents selected sometimes or greater for at least one of the social–relational bullying behaviors. In addition, the OR for this scale (3.40) was second in magnitude only to that for children with ED. Yet, it should be noted that parents of students with HI did not report significantly more victimization than parents of students without disabilities based on the general bullying item. Thus, although they reported that their children experienced these behaviors more frequently, it appears that they did not necessarily consider their children as being bullied more than other children. It should also be noted that the findings for children with B/VI, HI, and mild ID should be generalized to other populations with caution given the small sample sizes and because the prevalence rates are higher than those reported in the study by Blake et al. (2012), which used similar criteria but a much larger dataset (i.e., 40% vs. 22% for B/VI, 30.4% vs. 22% for HI, and 39.1% vs. 29.1% for mild ID).

Interestingly, the earlier study by Swearer et al. (2012) found that children with observable disabilities, which included children with HI, mild ID, and S/LI, were 2 to 4 times more likely to be bullied than children without disabilities. Whereas students with HI and mild ID similarly showed increased rates of victimization in our study, students with S/LI experienced the least bullying among all types of disabilities. The ORs for the three types of bullying behavior for these students ranged from 0.90 to 1.27 (median = 1.13). With respect to children with S/LI, our finding is consistent with the findings of Blake et al. (2012), who found that children with S/LI had the lowest victimization prevalence rates: 20% of parents of a child with S/LI reported that their child was bullied (compared with 24.9% for children with S/LI and 22.3% for children without disabilities in our study while using the global bullying item, similar to that used by Blake et al., 2012). This supports our decision to examine disability types separately because their experiences of bullying victimization differ.

Limitations

Our findings should be interpreted in light of the study’s limitations. We used a parent survey to assess bullying victimization because many children in elementary school are not able to complete written surveys (especially many with disabilities). However, student self-reports of bullying victimization are generally viewed as the most valid measures of bullying victimization and are most frequently used (Olweus & Limber, 2010). Because parents, teachers, and peers are unlikely to observe all incidents of bullying victimization, reports by others are subject to underreporting; children may not tell others, including their parents, that they are being bullied (al-
though we speculate this is more true with older students). Therefore, using parents as informants in this study may have contributed to lower prevalence rates than those often reported in the literature. We know of no studies that have directly compared bullying victimization rates reported by students with disabilities and by their parents on the same measure. However, one previous study showed that parents of children in the general population (ages 2–17 years) in Nordic countries reported comparable prevalence rates to student reports from other studies (Nordhagen et al., 2005). Clearly, future studies are needed to examine bullying victimization among children with disabilities using multiple informants and similar measures.

A related limitation was relying on parents to obtain information on students’ disabilities, including classification of disability and degree of inclusion. Lack of resources prohibited validation of this information, and it is likely that doing so would have been at the expense of a much smaller sample size than the sample of 13,021 parents in this study. Thus, a trade-off in surveying a large sample was the questionable validity of the primary disability reported by parents. On the basis of the percentages of children in different categories of special education in Delaware, some categories were overrepresented whereas others were underrepresented. Of the parents responding to the survey, 11.30% responded that they had a child with a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability). This compares with the overall percentage of 8.81% of students (Grades K–5) in Delaware identified as having a disability (7.89% after we deleted cases with inconsistent responses to the two items inquiring about a disability).
never and once or twice a month, indicated a frequency of bullying victimization falling between these two points. However, the frequency corresponding to sometimes is relatively ambiguous.

Implications

As found in this study, children with disabilities are generally at greater risk of bullying victimization than children without disabilities. However, prevalence rates vary greatly as a function of disability type and the measure used to identify victimization (i.e., global item vs. multiple items). Our findings were most robust and consistent with previous research (Blake et al., 2012) in showing that children with ED were at greatest risk of being bullied, but children with S/LI were at no greater risk than children without disabilities. Our study also showed that using different criteria to define bullying victimization leads to varying prevalence rates. We found that for all disabilities combined, the prevalence rate of bullying victimization increased approximately 400% (7.3% to 29.8% using the global item) when sometimes rather than once or twice a month was used as the lower-bound cutoff point in classifying children as bullying victims. Solberg and Olweus (2003) provided an in-depth discussion of the implications of using different cutoff criteria. As noted previously, they recommended that infrequent bullying behaviors (i.e., response of once or twice a month, similar to sometimes) not be included in the response criteria for bullying victimization and that the lower-bound cutoff point should incorporate the repetitive nature of bullying by using two or three times a month (note that their measure did not include a response option of one time a month).

The recommendation of Solberg and Olweus (2003) to exclude infrequent bullying behaviors was based on their research showing that the greatest psychosocial adjustment problems occur among children experiencing bullying frequently and also based on conceptual and practical considerations. First, including sometimes is incompatible with bullying’s common conceptualization (occurring repeatedly and over time). Second, including this response category causes the prevalence rate of bullying victimization to increase markedly. Higher prevalence rates based on more liberal criteria increase the number of false positives, which are cases that are predicted to experience negative outcomes but do not.

There are also multiple risks in making the bullying victimization criteria too conservative, such as (a) increasing the number of false negatives, which is the number of students designated as nonvictims but who are actually experiencing harmful behaviors; (b) reinforcing the belief that bullying seldom occurs and occurs only among those with the most deviant behaviors, resulting in victim blaming and neglecting the role of the school environment in bullying; and (c) hampering antibullying programs at the universal level of intervention (Solberg & Olweus, 2003). In addition, considering students who experience low-frequency bullying is important for the multitiered approach to prevention and intervention. A high percentage of students falling under this category may indicate a need for environmental changes such as highly structured classrooms with clear expectations, cooperative learning, embedded opportunities for social skills within the classroom, and explicit bullying-reporting procedures (Rose & Monda-Amaya, 2012).

Solberg and Olweus (2003) recommended that schools report prevalence estimates for frequent bullying, which excludes sometimes. However, they also recommended that schools report the frequency of lighter cases, which they view as “tendencies of being bullied” (p. 263). We concur, not only based on the reasons above but also for another practical reason. Reviews of the bullying intervention literature (e.g., Swearer, Siebecker et al., 2010; Tfofi & Farrington, 2011) commonly recommend that schools target bullies and victims for more intensive interventions (i.e., Tiers 2 and 3) in addition to implementing universal prevention programs. For victims, this would include small-group and individual assertiveness and social skills training. In addition, parental inclusion in Tier 2 and 3 interventions (e.g., parent conferences,
workshops, parent training) is often recommended. The difference between identifying approximately 30% of students as victims of bullying using the cutoff point of *sometimes* and identifying approximately 7% using the cutoff point of *once or twice a month* has profound practical and logistical implications for intervention delivery. On the basis of the average school psychologist–to–student ratio of 1:1,400 (Charvat, 2011), typical school psychologists would target either 420 students or 98 students (and their parents). Providing intensive services to 98 students would be a great challenge, and doing so for 420 students might be unrealistic. However, an equal challenge might be explaining to parents (and to school staff and the community) that 420 children are “victims of bullying” who require services beyond prevention (and that their parents too should be included in interventions and supports). For these reasons, it seems reasonable to limit bullying victims to those experiencing bullying frequently and repetitively.

REFERENCES

Date Received: January 8, 2014
Date Accepted: October 21, 2014
Associate Editor: Shannon Suldo

George G. Bear, PhD, is a professor of school psychology at the University of Delaware. His journal articles and books have focused primarily on classroom management; school discipline; and children’s social, emotional, and moral development. More recently, his research has centered on school climate, including its assessment, relations with important student outcomes, and cross-cultural comparisons.

Lindsey Mantz, MA, is a doctoral candidate for a PhD in Education, with specialization in school psychology, at the University of Delaware. Her research interests are in the areas of school climate and children’s social and emotional development. Her dissertation will focus on how students’ self-discipline is related to their perceptions of school climate.

Joseph J. Glutting, PhD, is a professor of evaluation, measurement, and statistics at the University of Delaware. He has published over 100 juried-journal articles, as well as multiple book chapters and five psychological tests.

Chunyan Yang, MA, EdS, is a doctoral candidate for a PhD in Education, with specialization in school psychology, at the University of Delaware. She is currently a school psychologist at Poudre School District in Fort Collins, CO, and is completing her dissertation on the relations among bullying victimization, student engagement, and the social—emotional learning approach. An additional major area of research interest is school climate.

Deborah Boyer, MS, is the director of the School-Age Services Unit at the University of Delaware’s Center for Disabilities Studies and the codirector of the statewide Delaware Positive Behavior Support Initiative. Her research interests include school climate, bullying prevention, and implementation of Tier 2 and 3 evidence-based interventions in schools.